

# **IC1301 - WiPE**

# Non-linear Energy Harvesting in Passive UHF RFID Tag

29<sup>th</sup> September, 2014

<u>S. Nawale</u>, G. Andia-Vera, Y. Duroc, S. Tedjini ORSYS Group, LCIS, Grenoble-INP, Valence, France









# Agenda

- » Introduction
- » Design / Prototypes
- » Experimental Results
- » Conclusion









### Main objective

 To combine RFID tag and EEH device, both working at different frequencies

 To exploit non-linear behavior of RF devices for mutual benefit







5



RFID communication @ 868 MHz EEH @ UMTS 2.17 GHz RFID communication @ 868 MHz EEH @ its 3<sup>rd</sup> harmonic 2.604 GHz

Harvested energy is re-injected into the RFID chip





RFID Tag and EEH section are integrated in a common antenna



#### Waveform design

Passive RFID chip generates modulated harmonic signals



Andia Vera, G.; Duroc, Y.; Tedjini, S., "RFID Test Platform: Nonlinear Characterization," Instrumentation and Measurement, IEEE Transactions on , vol.63, no.9, pp.2299,2305, Sept. 2014



# **Device Characterization**





#### Antenna structures



The arrows indicates the ports where RFID chip or lumped elements of EEH section are connected

Ocost C



# **Electric-electromagnetic co-simulation**



#### **Prototypes**



#### **RFID-TR with External - Harvesting**





Substrate: Rogers RO4003 Permittivity: 3.55 Thickness: 0.8 mm

(a) Dual Band Antenna, (b) EEH section, (c) RFID chip EM4325, (d) Feedback wire



# **RFID Tag with Self-Harvesting**

**Prototypes** 



(a) Single Band Antenna, (b) EEH section, (c) RFID chip EM4325, (d) Feedback wire

Setup





Equipments Used:

- Signal Generator (Agilent N5182A) for UMTS 2.17 GHz
- UHF RFID Reader (Impinj Speedway R420) for 868 MHz
- Horn Antenna (Gain = 10 dB)
- Reader Antenna (Gain = 6 dB)
- DC voltmeter



LCIS

Goals:

- 1. To measure DC output in EEH section (*harvesting evaluation*)
- 2. To measure tag sensitivity (read range evaluation)

| Case | Configuration                            |
|------|------------------------------------------|
| (a)  | RFID reader at 868 MHz sweeping in power |
| (b)  | RF source at 2.17 GHz sweeping in power  |
|      | Reader at 868 MHz (30 dBm)               |
| (c)  | +                                        |
|      | RF source at 2.17 GHz sweeping in power  |







**Harvesting evaluation** 

Output voltage with feedback condition

















# **Read-Range Evaluation**





#### **Demo Videos**

#### harvestingRFID.mp4 harvestingRFID-Test-Short.mp4





# Conclusion



- » RFID tag Energy harvester approaches are presented here
- » 33 dB of harvested power gain is achieved when both sources are combined compared to a single source
- » The RFID-TR read range increases in 3 meters when the combined harvested power is re-injected
- » Non-linear behavior is exploited as:
  - > Impedance power dependency, and
  - > Harmonic production





# Thank you! Any Questions?

For contact :

shankar.nawale@lcis.grenoble-inp.fr gianfranco.andia-vera@lcis.grenoble-inp.fr yvan.duroc@univ-lyon1.fr smail.tedjini@lcis.grenoble-inp.fr



Laboratoire de Conception et d'Integration des Systems, Grenoble-INP, Valence, 26902, France